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In this paper, we derive explicit formulas for the surface averaged first-exit time of a discrete random walk
on a finite lattice. We consider a wide class of random walks and lattices, including random walks in a
nontrivial potential landscape. We also compute quantities of interest for modeling surface reactions and other
dynamic processes, such as the residence time in a subvolume, the joint residence time of several particles, and

the number of hits on a reflecting surface.
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I. INTRODUCTION

The theory of random walks on lattices is not only a beau-
tiful mathematical object, it is also useful in numerous do-
mains of physics [1], including potential theory [2], statisti-
cal field theory [3], or biophysics [4]. Another natural
application is the diffusion of adatoms and vacancies on a
crystal surface [5-7].

Among the numerous issues involved in the study of such
lattice random walks, one important area is concerned with
random walks on finite lattices. There are two important rea-
sons for that special interest. First, true physical systems are
not infinite, so that explicit boundary conditions often have
to be taken into account in order to properly describe situa-
tions in which confinement can be relevant. Second, exact
solvable random walk problems in bounded domains are
very rare, making this theoretical field an important problem
in its own right [8—15].

Recently, Blanco and Fournier [16] reported an important
general result concerning the mean first-exit time of Pearson
random walks [17]—that is continuous space and time ran-
dom walks, with a given frequency of reorientation A of the
direction of the constant velocity v—in a bounded domain.
They showed that the mean first-exit time of a random walk
starting from the boundary of a finite domain is independant
of the frequency A\ of redirection, and is simply related to the
ratio of the domain’s volume V over the surface S of the
domain’s boundary. The corresponding equation is (in three
dimensions)

14

<t>=4v—S,

(1)
where v is the speed of the walker. This result was extended
by Mazzolo [ 18] to the higher-order moments of the first-exit
time, and by Bénichou er al. [19] to general diffusion pro-
cesses in a nonuniform energy landscape.

In this paper, we show how these results can be extended
to the important case of discrete space and time random
walks on a finite lattice. In particular, we obtain very simple
explicit expressions for mean exit times and mean residence
times averaged over the surface of the considered domain,
for rather general random walks. More precisely, the paper is
organized as follows. In Sec. II, we define the model under
study and the basic averages involved in the sequel. Section
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IIT is devoted to the study of first-exit time moments. In Sec.
IV, we generalize this approach and explicitly calculate the
mean residence time in a subvolume of the domain. Section
V presents an analysis of the mean number of hits of a re-
flecting surface. In Sec. VI, we generalize the previous re-
sults to the very important case of a random walk in the
presence of a potential. Finally, in Sec. VII, we consider the
joint residence time of several particles in subdomains of the
lattice and derive results that can be applied, for instance, to
the theory of heterogeneous catalysis.

II. MODEL

Let us start with the definition of our model. First, we
have a lattice, which may be of any dimension or connectiv-
ity: for instance, we can as well apply our results to the cubic
three-dimensional (3D) lattice than to the triangular 2D lat-
tice. We study the motion of a random walker (with memory:
the random walker has a probability of switching direction A
each time it visits a site; note that we can go back to the
model without memory by taking N=1). The random walker
starts from the boundary of a domain (see Fig. 1).

The position of the random walker is denoted by #(¢); the
speed of the random walker is u(¢). The only values it can
take are the difference between the positions of two neigh-
bors. The precise rules of the model thus write

FIG. 1. A typical volume: The surface is the dashed line; to the
right, the conventions for the surface.
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Ht+1)=r) + Ut) )

Heal)= {v(t) thh probab?l?ty -\ 3)
random with probability \.

We will also define conditional probabilities:
p(¥' ¥ ,t|F,v) is the probability for the random walker to
start from the position 7, with the speed v and arrive after a
time ¢ at the position 7 with the speed v'. We also note
p(7,v,1) the probability for reaching the boundary after a
time ¢, when starting from the point 7 with the speed v, we
have

F,0). (4)

The sum here means a sum over all the lines which cross the
boundary, and to which we can associate a point %,;, (inside
the boundary), a point %, (outside the boundary), and a
speed 0 which points from the outside to the inside (see Fig.
1). This convention means that we consider the random
walker has reached the boundary as soon as it reaches the
point inside the boundary, with a speed pointing out. This
also means that the time needed to reach the boundary is
equivalent to the number of (not necessarily distinct) sites
visited, not including the site the random walker begins on.
Thus, with these probabilities, for any quantity ¢(z) depend-
ing on the first-exit time t we can define its average on f:

p(;’{}’t) = Ep(zina_ 62’1‘
P

(7, 0) = 2 e(0p(F,0,1). (5)
=0

For example, we can define the average exit time with sim-
ply ¢=t

(7, 0) = 2, 1p(7,0,1). (6)
=0

Another such average which will be useful is the Laplace
transform

P(r0,s) =2 e p(F v =e . )
=0

We will then define two spatial averages of ¢: the first one is
the surface average

(D= § S ). ®

In particular, (¢)s is the mean time needed to return to the
surface, or, alternatively, the mean number of (not necessar-
ily different) sites visited between entrance and exit. Note
that the first site, which is out of the volume, is not counted,
due to the definition of the probabilities. S is the surface, or
the number of lines crossing the boundary.

There is a second useful average which may be defined,
the volume average

(Oy=—— 3 7D, ©)

Vopicy;

V is the volume, i.e., the number of sites inside the boundary,
and o is the coordination number of the lattice. For a hy-
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percubic lattice in dimension D, it is simply 2D.

An example of such a volume average is (f)y, which is the
mean number of sites (still not necessarily distinct) visited by
the random walk (starting from a random point in the vol-
ume) before exiting, not including the site it starts from. To
finish this introduction, let us note a few important relations

()_D(Eim_ 132) = ¢(Ein’_ 52’0) (10)

This is because the random walker starting at this position
automatically leaves the volume at time 0. We will often
have to compute terms like 2~ ,¢(t)p(Fr—v,v,1+1). We can
notice that, if 7 eV, then p(r—v,0,0)=0. Indeed, p(r,v) is
equal to one if =3, and v=-1s, and zero else. From the
definition of X, and vs, we can see that there is no re V
such that 7—v=3,,, and v=—1vs. Thus, we have

> eOp(F-vut+1) =2 ot - Dp(F-v,0,0). (11)
=0 =0

Furthermore, we notice that

E QB(;_‘D"B)_ 2 ()_D(;’l-;)

reV,o reV,o

= % ‘;_D(Eoul’i;i) - g Q_D(Einv_ 62) (12)

Indeed, the first sum over the surface includes all the terms
which are in the first sum over the volume, but not in the
second, whereas it is the opposite for the second sum over
the surface. This equation slightly simplifies

2 5(;— l_;’l_;)_ 2 5(7,17)=2¢(20uts52)—5¢(0)

reV,o reV,u 3
(13)

Finally, we can easily extend the model to the case where
the surface portions may be either absorbing or reflecting.
For example, it may be useful to compute the mean return
time to a site, if the boundary conditions are totally reflexive
(see Fig. 2).

We denote 3, the points of the absorbing surface and X’
the points of the reflexive surface, defined by the reflective
boundary condition

p(F U |2, — vs) = p(F' U120 Us ) - (14)

Equation (12) is thus modified the following way:

2 er-v0)- 28R

reV,o reV,o
= 2 ()_D(Eout’ 52) - 2 @(Ein’_ 62) + 2 ()_D(E(’)ms 1_32/)
3 3 s/
-2 (S o). (15)
2/

The two last terms are exactly equal, and thus we have
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FIG. 2. The surface is totally reflecting; to compute the average
return time to a site, we compute the average return time to the
surface surrounding the site, and add 1.

> F-v0)- X @i = E‘P 20w vs) = S¢(0),

reV,u reV,u
(16)
where S is the surface of the absorbing portion.
Thus, in the sequel of the paper, we have to keep in mind
that all the results apply to a lattice where a part of the
boundary is reflecting.

II1. FIRST-EXIT TIME

We can now proceed to the computation of the moments
of the first-exit time. We have the following equation for the
conditional probabilities:

p( U, t+ 1|7 - 1,0)

rz7)+—2[p(

DUH

MR = p(F, Tt

(17)
This equation is simply the translation in terms of condi-
tional probabilities of the rules for the behavior of the ran-
dom walker. We may at once sum over all the 7’ and v/ on
the boundary, as indicated in Eq. (4), and we have

P55+ 1) =p(F ) + =S [0 - pl7, 5]
D
(18)
We may now use the Laplace transforms
e*p(r—uv,v,s) = p(rvs)+—2[p(ﬁl7’ -p(r,v,s)].
Op
(19)
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When we sum over all 7 and v, the two last terms cancel
out

> (AT - @(7,0) =0 (20)
70

and we can make use of Eq. (12) to obtain

| Z o9 = 2 = 00) | = (1 =) PG,

(21)
Thus, we have
SEe™s = 1) = (e = DopVe™)y. (22)
If we develop each side in powers of s, we obtain
- k( 1)k - S](— l)l - s"(=1)"
SE (s =0pV 2 > (")y.
=1 I m=0 m!
(23)
If we identify, we have
(- ) Ve 1
k D k1
—(t . 24
T =T Ezz(mﬁ i (24
Finally we have the relation
oV (1
(My=—"2 ( )(t”"”>v~ (25)
S = \m

It is possible to obtain this expression directly from the
evolution equation of #'. However, the computation is
slightly longer, and we will not detail it here.

An important consequence of this relation is that, in the
special case of the first moment, we have the following
simple result:

(s = UDV (26)

This explicit result is quite similar to the result obtained in
the continuous case [16]: It has the same dependence on the
surface and volume, but the numerical prefactor is modified.
The simplicity of this equation makes it very easy to use. For
instance, in the case of Fig. 2, we obtain the result that the
average return time is simply V. It depends neither on the
frequency N nor on the shape of the volume.

However, we must note that, for the higher-order mo-
ments, the results obtained are different from what we have
in the continuous case [18]: In the latter case, the nth mo-
ment of the surfacic first-exit time depends only on the
(n—1)th moment of the volumic first-exit time, whereas, on a
lattice, we must take into account all the (n—1) first moments
of the volumic first-exit time.

Furthermore, we can obtain a lower bound for (f)y, if
we inject the value of (¢)s into the equation for the second
moment
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20V 1
2 D
)y = Hy+ <. 27
(s == (< 0 2) )
Since we have

()5 = (0s)? (28)

we finally obtain the following bound:

U'DV 1

Hy=——-—. 29
Ny s "3 (29)

Note that there may be equality only in the case when every
trajectory from surface to surface has the same length. For a
square lattice, this is only the case for a ballistic motion (i.e.,
A=0) when the volume has a square shape.

IV. RESIDENCE TIME IN A SUBVOLUME

In many problems, the interesting quantity is not the time
spent in the whole volume, but rather the time spent in a
subpart of this volume. For instance, the random walker may
be a chemical reactant which may react exclusively on sev-
eral catalytic sites. Then, the subvolume corresponds to the
ensemble of these catalytic sites. Here we will only derive
the first moment of the residence time in this subvolume V',
since the other moments are of limited interest, and have a
much more complicated expression. What we will compute
is the average residence time in V', assuming the random
walk starts and finishes at the boundary of V. Thus, here, we
will slightly modify the definitions of p(r,v,t) and #(r,v).
The time will be the time spent in the subvolume V’. We thus
have

I - A - -
p(F=0,0,t+1)=p(F0,0) + — >, [p(F. 0 ,1) — p(F,0,0)]
Op %
(30)
ifreV’.

p(F=0,0,1) = p(7, vt)+—2 [p(7.0,1) - p(F,0,1)]

(31)

ifreV'.

Thus, we have
F=0,0) - 1 =17 0) + AE [770)-170)]  (32)
Op i

ifreV’.

17— 0,0) =17, 5)+—2 [77 ) - 17 0)] (33)
Op 5

ifre V.
We sum all this, which leads to

D5

Z (r—uv,0) = E r17)+—2[t717)—t(r17)]+0'DV'

(34)
Equations (16) and (20) still apply here, and we have
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U'DV

(s = (35)

Thus, the residence time in a subvolume is proportional to
its volume, and does not depend of the shape of the subvol-
ume. We can also say that each site is visited in average
opl/S times. We check that, if the subvolume is in fact the
whole volume, we find the same result as previously [see Eq.

(20)].
V. NUMBER OF HITS ON A REFLECTING SURFACE

Another question which may be asked is the following:
On average, how many times does a particle touch a portion
3" of the reflecting surface before exiting? If we note ¢ the
number of times the particle touches the surface X" before
exiting, we have the following equations: (we note in this
section %, the rest of the reflecting surface, and X is still the
absorbing surface)

p(F=,0,0) = p(rvz>+—2[p<“' 1) - p(7,5,1)]

(36)

and the boundary conditions
p(zin’_ 527t) = 5(t’0)9 (37)
P(Ei,n’_l_;E”t)=P(E(,)upl-;2’J), (38)
P = vsnt+1) = p(E5,, V). (39)

Using the Laplace transforms, we get the following equa-
tions:

PF=0.0.5) = p(F. ) + U—DE [B(7. 0 .5) = (7. 0.)].
(40)
P — vs,8) = 1, (41)
P(S = Us1,8) = P(S 0 Tsr,58), (42)
e P(Sir— V) = P(S0 Vsr.s). (43)

Here we can sum the relation (40) over all 7 and v, and
use the relations (12) and (20), which yields

E [p(zouv UE) p(zm? UE):] + E U’(Eoup

27
Ia(zi,n’_ 62’)] + 2 [ﬁ(zgup 132”) _pA(zﬁq’_ 1_})2”)] =0.
2”
(44)
We define
<(P>2" - //E (P(Eout’ UE”) (45)

E//
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Using the boundary conditions, we get

Se™s = 1)+ 8"(1 —e™*){e™)sn=0. (46)

If we develop this expression into powers of s, and identify,
we finally get the following relation for the moments of ¢:

(") = < % (:l )(ln_m>z~~ (47)

We may notice that, for the first moment, we get the simple
result

"

(s = R (48)

This relation is again quite simple, and may easily be directly
useful.

VI. CASE OF A NONUNIFORM ENERGY LANDSCAPE

The most simple models of random walks, which we have
considered until now, assume that all the points of the lattice
are equivalent. But, in some applications, we have to take
into account the fact that the vertices of the lattice may be at
different potentials. For instance, in the case of a particle
(vacancy, adatom) moving on a crystalline lattice, the pres-
ence of an inhomogeneity (typically, another kind of atom,
which would be adsorbed in the surface) may modify the
effective potential for our random walker around it. In the
model we will introduce in this section, the various points of
the lattice may have different energies. To take this particu-
larity into account, we add to our model a reflexion probabil-
ity. When going from the site x to the site y, the random
walker has a certain probability R, _,, to be reflected, and a
probability T_,, to be transmitted. The probabilities satisfy a
detailed balance relation, which is

T e =T, e=A,,. (49)

(We consider kT=1, and scale the energies accordingly.)
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Thus, the law is

r?(t+ D=1+ u)
u1) prob.

e+ 1) o
t+1)=
random prob. A

prob. i) iw+is)»
Ft+1)=r(1)
—o(t) prob. 1-\

random prob. A\

Hitl)= prob. Ry i+ -

\

(50)

As for the boundary conditions, there may be reflections
on the entrance of the volume. We note Ay s =As. Of
course, if the particle is immediately reflected, the total time
it will have spent inside the volume will be 0.

We also redefine the average residence time: It will be the
residence time weighted by the Boltzmann factors of the en-
try sites

E e_Ez‘J“‘ 4(2011{’ BE)

(s = : ) (51)

E e _Ezou(
3

It is this average residence time we will compute here. We
have

p(r=v,0,t+1)

- A . -
= T;_%;(p(r, u,0) +— > [p(A, v ,1) - p(7, vJ)])
Op B
+(1- TF—%;)(P(F— v,— 0,1)

+ AE [p(F=0,7,1) - p(F— D,— 5,z)]> (52)

Op B

if 7—ve V. As for the boundary conditions, we have

- A - -
p(Eout’ 1—;2,1‘ + 1) =T20ut"2in<p(zim UE’I)"' _2 [P(Ein’ ‘U’,t) - P(Ein, UE’I)]

p(zoutv 52’0) =R20utﬂzin

9D ) (53)

Y ., ]
p(Ein,— UE,I+ 1) :Rzinﬁzom<p(zin?v29t)+ o Z’ [p(Ein’v ’t) _p(zin’ UEJ)]

p(zin’_ 52’0) :Tzin_'zoul'

3 |
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Then, from this model, it can be shown (see Appendix A)
that

S et
;

= (55)
E e_ES‘om
pX

(Hs=0p

This relation may quite easily be understood intuitively: If
the energies in the volume are lower than the energies in the
surface, the random walker will have more difficulty exiting
the volume, and, thus, will stay longer inside the volume:
The sum X;e~%7 will increase. Inversly, if the energies in the
volume are higher than the energies in the surface, then the
particles will tend to be reflected immediately, and the aver-
age time spent in the volume will decrease drastically. More-
over, if the energy landscape is flat, the energies are identical
everywhere in the volume and the surface, we go back to the
simple result (26).

VIL. JOINT RESIDENCE TIME FOR TWO PARTICLES

We will now consider not one, but several particles dif-
fusing independently, and we wish to compute joint resi-
dence times. This is interesting in the case where we have
several particles which must be on the same site to react [20].
For example, it may be two chemical reactants, or a vacancy
and an adatom. If the two particles are strongly interacting,
they will react as soon as they are in contact. The interesting
quantity here is the meeting probability P. We cannot com-
pute it directly, but, given the average interaction time, we
may have an upper bound

P < (1. (56)

(Tt is interesting, since the average interaction time will gen-
raly be much lower than 1.) Otherwise, if the two particles
are weakly interacting (i.e., have a small probability p of
reacting each time they meet), then the reaction probability
will be approximatively

P=p(o). (57)

Thus, it is always interesting to compute the joint residence
time. So, we consider here two particles, which may either
start from the bulk or the boundary of the volume. We define
the joint residence time as the amount of time spent by the
two particles on the same site before one of them exits. Thus,
we can define ¢(7,v,7",7',t), the probability that the two
particles meet  times before they exit, given that the first one
starts from the position 7 with the speed v, and the second
one starts from the position 7’ with the speed ¢'. We can also
define the average interaction time given the initial positions
and speeds (7, v, ,v).
We have the following equation:

PHYSICAL REVIEW E 72, 016127 (2005)

- > >

r-vur -v,v)

o N e o o
=(1=-NF 0,7, 0) +—0 =N 2 (AT, 7, 0)
Op B

A I
+—1-N2ARu 70"
g,

D ]7//
)\2
+— > WRTLFL ) + 87 F). (58)
O—D 1—*/!,1—]/!

[The &(7,7") is the Kronecker delta function, whose value
1 if 7=7" and 0 otherwise.] If we sum this over all 7,7’ ,v, 7,
we notice that the right-hand side of this equation nicely
simplifies

> WF-vur -v.0)= X, ARLFLT) +ahV.
00 o0

(59)

The last term is simply the number of quadruplets

(r,7",0,0') where r=r". We have the following relations,
similar to Eq. (16):

— D= Vs, = V). (60)
3

The last term in this equation is zero, since if a particle is at
the position 3;, with the speed —vx, it immediately exits. We
thus have

S Wi -7,7)

>y >y

rro,uvv
= 2 f(;,l_;,l;’,,l_;,)'i' E f(zouts%s;’75,)
PR R
+ E ?(F’ l_;’ E(’)ut, ‘Dé) + E ?(Eou[’ ‘52’2(,)11[’ 'Ué) . (61)
rus’ Y

Finally, reporting this result in Eq. (59), we have

2 E ?(Eout’ 732’;,’17) + 2 ?(Eout’ l—;Z’E(,)ut’ l—;é) = O%V
PRV 33/

(62)

If we define the following average joint occupation times:

Y WSou s, 7 0) (63)
VopS, 5 out

SU

(Osy=

=1
r

is the average joint occupation time when a particle starts
from the volume and the other from the surface, and
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1 - )
(Os2= ? E H(Zoue Vs 2 oue ) (64)

33

is the average joint occupation time when the two particles
start from the surface. Then, we have the following result:

oV =20,VS(tysy + SXD)s2. (65)

Thus, we cannot have a totally explicit result for the joint
residence time; we just derived a relation between two dif-
ferent joint residence times, depending on where the two
particles start from. However, this relation gives immediately
a useful upper bound to these joint residence times

0,2
(= LY, (66)
sy < ‘2’—5 (67)

Since, in trial cases, we found out that the magnitude of the
two terms in the relation (65) was similar, we have good
hope that these relations will at least give an upper bound
which is of the good order of magnitude.

It is possible to have a similar result for n particles: It is a
relation between n different averages (depending on the
number of particles which start from the boundary, and the
number of particles which start from the volume. The result
(see Appendix B for details on the computation) is the
following:

AEDY

m=1

( " )Sm(O'DV)n_mO‘)zmv"—m’ (68)
m

where (f)smyn-n is the average joint residence time for n par-

ticles, of which m start from the surface and n—m from the
boundary.

VIII. CONCLUSION

The results obtained in this paper significantly extend the
results previously derived [16,18,19]. They show that the
mean first-exit time behaves differently for a discrete lattice
and for a continuous media, not only quantitatively [as for
Eq. (26), for instance], but also qualitatively [see the relation

e BT~ 3,0) — 1] =

>

rour—veV

A--

rr—

v
|

r,uv, v

> e—E;-a(f(f-a,—mlE[?(r*—ﬁﬁ’>—?(?—i—5>])-
eV 9 v

D
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for higher-order moments (25)]. It should be pointed out that
we obtained explicit exact results [Egs. (26), (35), (48), and
(55)], which are not so common in the bounded random
walks literature. Furthermore, they apply to all kinds of lat-
tices and random walks: Because they have a very general
range of application, these results can be very useful when
the evolution equations cannot be solved exactly. In fact, it is
even possible to generalize our methods to irregular net-
works, where the connectivity can vary from one site to an-
other. This may be of special interest for complex networks
which can be found in ethology, economy, neural networks,
or social sciences. Such an extension is in progress.

APPENDIX A: COMPUTATION OF THE MODEL
WITH ENERGIES

We can rewrite Egs. (52), (53), and (54) in terms of aver-
age time
(r—v,0 -1

= T;_a_J(f(;,lj) + LE [(r, V) —7(7,17)]) +(1=Tr;7)
op

« (f(?— G D)t S [ 00— = e 5)])
Op B4

(A1)

if 7—ve V, if we define

- A - -
as = t(zin’ UE) + 0__2 [I(Ein’v ) - t(zin’ UE)] +1.
D M
(A2)
Then we have

t(zout’l-;E) = Tzomﬂzinaz’ (AS)
S vs)=(1-Ty, 5 Jos. (Ad)

If we sum the relation (A1) over all 7 and v, weighted by the
appropriate Boltzmann factors, we get

,;(7(;,5) - - a)lz [77,0) = T(F = 0.0+ T(F = B— 0) — (7, D) ])
op o

(A5)
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We will see how all these terms may transform.

2 e_E;_lle(F_ 676) = 2 e_E;lT(;»I_;) - 2 e_EEi"l_(Eim_ 132) .
7o 3

ror-veV
(A6)
We also have
Z A J(I" 6) EAI r—y(;’ﬁ)_zf(zinaljg),
ror-veV 3
(A7)
E A 17t(r_ v,— 'D) E Ar -, r’t(r U’)
= DS ty). (A8)
3

(We just take v/ =—v, 7' =r—1.) Note that these two expres-
sions are identical only because of the detailed balance con-
dition, which implies that the function A has to be symmetri-
cal. It is important since these two terms must cancel each
other. We must also compute

Y Ay = EAM_J(“’) Et(Em,
Vv

r,u,r-ve

(A9)
i 17) - 2 ?(Ein’ 17)
3

(A10)

(We just take v'=-v, "=r—1.) These two terms also exactly
cancel each other because of the detailed balance condition.
We have of course similar relations with the terms in e 73,
We now use all these relations in our main equation, which
yields

> e EHRD) - 2 e
7o b

_ E e—E;t—(r"’ 1‘5) _ 2 e_Esz(Ein, 172)
7o 2

Exf(3 - ) — Ee r+ze i

rv

_E{f(;’ 17) - ?(;’ l_;)]

(A11)
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We use the relation (A4) on the left-hand side, and recognize
as on the right-hand side, we get

D(—e Bt Ay)as - > e e D et
P FU P

=—> e P(as - 1). (A12)
3
Since, because of the relation (A3), we have
2 Asay
(s = (A13)
E e oy
we get the relation
S et
(N =0pe (A14)

St

3

APPENDIX B: COMPUTATION OF THE JOINT
RESIDENCE TIMES FOR r PARTICLES

Here we will evaluate the joint residence time for n
particles, i.e, the amount of time they will spend all in the
same site. We will not write the equations in the fullest
detail, since it would take pages, but the calculation is quite
similar to the calculation for only two particles. We will
define the times #(7,v,...,r,,0,), which are the average
time the n particles will spend together, given that the kth
particle starts at the position 7, with the speed v,. These
times obey a relation quite similar to Eq. (58), but this rela-
tion is quite unwritable in the case of n particles. However,
we can see that the right-hand term will simplify the same
way it does for two particles, and we will get the equivalent
of the relation (59)

2 t(rl - vl’vh -)n Qn’l_;n)

1 El*' Tn Un
= 2 ?(;13513~--’;n35n)+ojbv- (Bl)
FL UL s Fy Uy
Again, o),V is simply the number of 2n uplets
(71,0, ...,7,1,) which satisfy 7,="-+-=7,. We will also have

the relation, similar to the relation (61), where we put to-
gether the terms which are similar

2 f(l;)]—l-;],ljl,...,;n—l—;n,'l—}n)z 2 ?(F],l—;], ,rn,l-;n)
FLUL Py Uy FLUL T
. n
>(1) - 5> >
+ E <m> 2 2 t(zoul’ ki 25)’33”’(’”) rm+l’ m+1s - ’rn’ n)'
m=1 S S0 F T Tty
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The average joint residence times are defined by

Ly 3

(Osmyn-m= e
"oV ™" s s iy

We thus get the relation

V=2
m=1

m

m+1:Um 1o o
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— ] 1 - - - -
TSR SR TR RIS TA R (B3)

( " )Sm((TDV)n_m<t>2mvn—m. (B4)
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